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COMMUNICATION EFFICIENCY 
OF QUANTUM SYSTEMS 

By Sherman Karp 
Electronics Research Center 

Cambridge, Massachusetts 

SUMMARY 

This report presents a method for evaluating the theoretical 
performance of quantum communication systems based on the communi- 
cation efficiency parameter, B = P/NOR. For Gaussian systems, B 
represents the minimum average amount of energy required to deci- 
pher a bit of information, with zero error, in the presence of 
white noise of spectral density No. For certain quantum systems, 
the Gaussian result is directly applicable with No replaced by 
hv. In general, 6 is recognized to be the minimum number of aver- 
age (photon) events required to decipher a bit of information with 
zero error. To make comparisons with Gaussian systems, the para- 
meter K is introduced and hv/K becomes the effective Gaussian 
spectral density of the quantum system. Several systems are con- 
sidered in addition to the capacity bound for the narrow-band 
quantum channel introduced by Gordon. Unlike the Gaussian channel, 
there is no lower bound on B as the bandwidth-to-data-rate ratio, 
CL, is increased. Thus B can be continually decreased at the 
expense of average data rate. For large values of a, PPM direct 
detection asymptotically approaches the lower bound for B. 

INTRODUCTION 

As more and more attention is given to optical communication 
systems, it becomes necessary to develop effective guides so that 
they can be compared with each other and to other communication 
systems. At present, the only comparison that has been used is the 
post-detection signal-to-noise ratio (refs. 1,2). However, as has 
been pointed out (ref. 3), this can be misleading and a more 
objective criterion is needed. For communication in Gaussian 
noise, an accepted criterion is the B-efficiency (ref. 4) or the 
minimum energy required to decipher a bit of information with 
zero error in the presence of white Gaussian noise, the spectral 
density of which is No. Thus: 

(1) 



with P the average power and R the data rate. This is generally 
a function of the ratio of the available bandwidth B to the data 
rate. In this report, it will be shown that this criterion is 
also applicable to optical systems and can yield some interesting 
results. Unity quantum efficiency will be assumed throughout the 
report. 

BACKGROUND 

As is well known, the capacity of 
channel can be written as 

R = B log2 

If this is rewritten in terms of 6 and a = B/R, it takes the form: 

an additive white Gaussian 

(2) 

6 = cX(2l'"-1) . 

As a -+ ~0, 6 is monotone, 
given by 

decreasing and has a lower bound, Bmin, 

B min = loge2. (3) 

Hence, for any given noise spectral density No, there is a mini- 
mum amount of energy required to decipher a bit of information 
with zero error. Thus from a theoretical point of view, it is 
best to use all the available bandwidth to send any information 
rate R. 

For a narrow-band photon channel, Gordon (refs. 5,6) has cal- 
culated the maximum source entropy, which has been verified 
(refs. 7,8) as being a tight bound to the capacity of a noiseless 

narrow-band optical channel. This expression takes the form: 

R = B[,,gk+&)+ & logb++]. (4) 

An important comparison can be made between Eq. (4) and the 
capacity of the additive Gaussian noise channel in the limit as 
P/hvB becomes large. Then, to first order: 

R 2 B log l+ [ (&iT)+l] 

2 Bbog(l+&)] 

(5) 



and it is recognized that even with no additive noise the photon 
channel looks approximately like an additive Gaussian noise 
channel with spectral density equal to hv. The associated signal- 
to-noise ratio, P/hvB, is referred to as the photon-limited, 
signal-to-noise ratio. It is also common to associate an equiva- 
lent Gaussian temperature Tg to this expression by the relation: 

hv T =--r;-=4.8x1O 
53 

-%. 

It must be remembered, however, that these latter remarks onZy 
apply to the approximation in Eq. (5). 

The B-efficiency of the narrow-band channel can be computed 
in the following way. With the result taken from the Gaussian 
channel, B can be associated with P/hvR. Thus Eq. (4) can be 
written as 

1 - = log c1 ( > 
1+! + $ log 

( ) 
1+; . (6) 

The B-efficiency of this channel is plotted in Figure 1, together 
with that of the additive Gaussian channel. Notice that for the 
narrow-band photon channel, B is a monotonically decreasing func- 
tion with no lower bound. 

OPTICAL HETERODYNE DETECTION 

It was first suggested by Oliver (refs. 9,10), and has since 
been substantiated experimentally, that one can obtain the channel 
characteristics of Eq. (5) by using optical heterodyne detection. 
In this technique a local oscillator is aligned coherent with 
received field over the surface of a quantum detector. The net 
result is that, because of the non-linear behavior of the detec- 
tor, a signal appears at the difference frequency of the two 
fields. By making the local oscillator field very large it becomes 
the major contributor to the noise, and by central limit theorem 
arguments this noise is Gaussian. The resulting signal-to-noise 
ratio can then be shown to be: 

P 
= hvB - and 8 = & . 

with 8kfk = log 2. It can also be shown that even in the presence 
of additive theFma1 background noise, the net result of this pro- 
cedure will remain substantially the same (ref. 11). 
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For the narrow-band optical channel, f3 lends itself to an 
interesting interpretation. For this case, one can write P as 
the number of photons arriving per second, ii, multiplied by the 
energy per photon, hu. Thus: 

P 
B=h,R= 

;;hv n 
m=it 

or the number of photons per bit. Thus we see that the B effi- 
ciency of an optical channel can be interpreted as the minimum 
number of photons required to decipher a bit of information with 
zero error The Gordon bound indicates that this number is mono- 
tonically decreasing with a. 

OPTICAL, HOMODYNE DETECTION 

A unique feature of the heterodyne system is the performance 
at zero difference frequency when the signal local oscillator 
fields are homodyned. It can be shown that the signal-to-noise 
ratio becomes 2P/hvB, or, that the noise spectral density is hv/2. 
This does not happen with RF systems and can be considered to be 
a quantum effect. To see this, again, consider Eq. (5): 

R 2 B [log(l+&)+ l] 

for high signal-to-noise ratio. The first term on the right side 
of Eq. (5) is treated as the classical portion while the second 
term is the quantum portion. This can be approximated by 

R z B [log(&)+ l]= B log(&) 

or an effective noise spectral density of hv/e. Thus the capacity 
of the heterodyne system does not approach the Gordon bound, but 
is 4.34 dB away. By contrast the capacity of the homodyne system 
is: 

R z B log[l+& B log&) 

with 6kpz = 1/2&Z = l/2 log 2. This system recovers 3 of the 
4.34 dB. One can view this g%n as a coherent addition of the 
positive and negative signal frequencies, but an incoherent addi- 
tion of the quantum noise.* The Gaussian temperature associated 

* 
Private communication with R. Kennedy and E. Hoversten, Dept. Of 

Elec. Engng., M.I.T. 



with homodyning is: 

hv 
Thom = 2k = 2.4 x 10 -%. 

DIRECT DETECTION - WIDEBAND OPTICAL FILTER 

At optical frequencies one is afforded the additional lati- 
tude of direct or incoherent detection without the use of 
diffraction limited receiving structures. This is due primarily 
to the availability of quantum detectors and the validity of geo- 
metric optics. In direct detection the received field is collected 
and focused onto a quantum detector, the response of which is pro- 
portional to the instantaneous power collected. The resulting 
current flow can be accurately modeled as a conditional shot 
noise process (ref. 12) with the rate parameter proportional to 
the instantaneous intensity integrated over the active area of 
the detector. 

Initial analyses of direct detection systems were based on 
the signal-to-noise ratio. This quantity can be shown to be less 
than or equal to the quantum-limited signal-to-noise ratio. Un- 
like the heterodyne system, however, it is very sensitive to any 
form of additive noise. Thus, from a cursory examination one 
would only consider direct detection systems where heterodyne detec- 
tion could not be used. More recently, however, Reiffer and 
Sherman (ref. 13) and then Abend (ref. 14) recognized that the per- 
formance of a direct detection system was also sensitive to signal 
design. Later it was shown that, based on the same Poisson model, 
the optimum M-ary system was discrete pulse position modulation 
(ref. 3). Karp and Gagliardi (ref. 15) designed a system based on 
these results which minimized B for each given value of a. The effi- 
ciency of this system is plotted in Figure 2 for zero background 
noise, together with the Gordon bound and both the heterodyne and 
homodyne systems. Notice that for c1 > 5 the PPM system is more 
efficient than heterodyning, and for a > 20, it is more efficient 
than homodyning. In fact, in the limit as a + 03, the PPM system 
approaches the Gordon bound. For small alphabets, c1 < 5, the PPM 
system is, however, outperformed by the optimum binary quantum 
receiver (ref. 16) as shown by the hatched lines in Figure 2 (for 
M=2 on-off modulation is superior to PPM and comes very close to 
the optimum quantum receiver). This latter system is the only one, 
so far, which has been designed strictly by quantum mechanical con- 
siderations. In fact, the physical structure of this receiver is, 
as yet, undetermined. It is believed that this system reduces to 
a biorthogonal homodyne system, gaining an additional3 dB in perfor- 
mance, when signal design is optimized.* 
* 

Private communication with R. Kennedy and E. Hoversten, Dept. of 
Elec. Engng., M.I.T. 

6 



IO 

I 

P 

.I 

01 L 



When background noise is considered the channel performance 
of the PPM system naturally degrades. In Figure 3, this perform- 
ance is plotted for the PPM system with the background noise, K, 
a parameter. K,, which is proportional to the background noise, 
is a measure of the average number of noise events present per 
pulse position. Notice that for each value of K,, performance 
follows the zero noise system until a break point is reached. At 
this point, efficiency flattens out. The smaller the value of 
K the lower the value of B at which the break point is reached. 
Ir'is clear that efforts to reduce K n will result in increased 
performance. On the other hand, Kn is a measure of the quality 
of the components used (i.e., width of the optical filter, quality 
of the collector for a given diameter, speed of the electronic 
processing for low duty cycle); hence a balance must be reached 
between cost and performance. Notice, for example, that for 
c1 = 10 there is no gain in reducing Kn below 0.01. 

DIRECT-DETECTION, NARROW-BAND OPTICAL FILTER 

It has been shown by Liu (ref. 17) that a system, dual in 
performance to PPM, is frequency-position modulation or frequency- 
shift keying. This brings up the question as to the range of 
validity of the Karp-Gagliardi system. They have assumed Poisson 
statistics, and hence have inherently assumed that the optical 
filter has a larger bandwidth than the overall system bandwidth. 
If the bandwidth of the optical filter is reduced to minimize 
noise by matching the system bandwidth, the statistics change to 
a Laguerre density in Bose-Einstein noise (ref. 18). With these 
latter statistics, the efficiency of the PPM narrow-band system 
(and the dual system) was recalculated and is plotted in Figure 4, 
together with the result for the Poisson case. 

For Kn = 0, both systems are identical, while for a given 
value of Kn the B-efficiency of the wideband system is lower than 
that of the narrow-band system. Of course one cannot compare the 
two systems for the same value of Kn since they correspond to two 
different levels of prefiltered noise intensity. From physical 
intuition one always expects the performance to improve as the 
background noise decreases. Thus, the following observations can 
be made: 

1. All other factors being constant, one always improves 
system performance by decreasing the filter bandwidth 
to match the system bandwidth (up to the point where 
the K, = 0 curve is approached). 

2. All other factors being constant, one always improves 
system performance by decreasing the duty cycle to 
match the filter bandwidth (up to the point where the 
Kn = 0 curve is reached). 
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3. If one has a choice of either decreasing K, by (1) or 
(2) or decreasing Kn - by a statistics preserving means 
(such as decreasing the field of view of the collector), 
the latter is preferable. 

COMMUNICATION EFFICIENCY WITH ADDITIVE GAUSSIAN NOISE 

In private correspondence, it has been suggested by Gordon 
that the capacity equation in reference 5, Eq. (51, is valid for 
the quantum channel in the presence of additive Gaussian noise. 
This equation is: 

R = B {log [l + ..x,]+ k$) log [l + #- & log [l + + 

(7) * 

where N is the average noise power. It follows immediately that 
N/hvB = Kn in the notation used here. Therefore in terms of cx, 
P, and K we can write this as n 

; = log [l + !&I + (i + Kn) log [l + ,,;+KJ - Kn log (‘++-) 

(8) 

Introducing the variable B/a = n, multiplying both sides of Eq.(8) 
by B and rearranging, yields 

B = log(l + k) + (n+Kn) 11, (1 + &) - Kn log (1 + &) 

a = B/II. (9) 

The limit of large a corresponds to n + 0. It can be shown after 
a little manipulation that 

lim 
q+o f3 = 

l,,[,: +--I' 
(10) 

which is the identical result as that obtained by Liu (ref. 17). 
Since the capacity of the Poisson channel can be shown to approach 
that of the quantum channel for P, N small, we can conclude that 
the result in Eq. (10) is also valid for the wideband PPM channel. 
Equation (9) is plotted for several values of K, in Figure 5 to- 
gether with the results for the wideband PPM channel. 
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Another interesting result also suggested by Gordon can be 
obtained for large K,. For this case it can be shown that 

lim P 

Kn large 
= (l+K,) log 2. 

Suppose Kn arose from a blackbody at a temperature T 
n' Then 

Kn = hv' . (11) 

e KTn - 1 

For this to be large implies that hv/KT, << 1 or TN >> hv/K. But 
this is merely the classical Gaussian limit. To see this we write 

or 

KTn 
= hv - - log 2 

P - = log 2, KTnR 

the classical result discussed earlier or, 

R= P 

KTn log 2 bits/set. 

Similarly, for C large, Kn small and the assumption in 
J%l- (11) ‘ 

B = 1 

( 
log 1 + $- 

n ) 
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1 = 
hv 

log e KTn 

KTn 
= hv - log 2 e 

or again, 

P - = log 2 e. KTnR 

EFFECTIVE GAUSSIAN TEMPERATURE 

As mentioned earlier, it is common to associate a noise 
spectral density hv with a quantum system. On the other hand, it 
has also been shown that to associate an irreducible temperature 
T = hv/k with a quantum system is fallacious. Still one desires 
a figure of merit whereby various systems can be compared. It is 
proposed here that an nJ'f/~~-/.ic.- Caussiavl temperature can be estab- 
lished whereby quantum systems, in general, can be compared with 
Gaussian systems. If one defines 

where 6 is the communication efficiency of the system to be com- 
pared, then the L?~~~:.c.J+ i.r-~, i;~uss~nn temperature of this system is, 
T 

g' 
where 

T +!. 
g 

The values of K are plotted in Figure 6 for some of the noise- 
less systems considered previously, in Figure 7, for the wideband 
PPM systems, and in Figure 8 for the narrow-band PPM system and in 
Figure 9 for the maximum value predicted by Eq. (9). For the 
homodyne system, K was equal to 2. Two examples follow. 

Example I - Wideband PPr.1 

ci = 100 

Kn ( 0.002 

K = 3.3 

T at 0.53~ (6x10 14) = 8000°K 
g 

at 10.6~1 (3x10 13 Hz) = 400OK 
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Example II - Gordon Bound 

a = 100 

K=8 

T 
g 

at 0.53~1 y 3400°K 

at 10.6~1 E 170°K 

Another common figure of merit used is (S/N)B, where (S/N) 
is the signal-to-noise ratio in a bandwidth B. For the hetero- 
dyne system, which appears to behave as an additive Gaussian 
noise channel, this figure of merit has the same meaning. For 
direct detection systems with analog signalling, one may also 
assume that this figure of merit has substantially the same mean- 
ing, particularly for high values of (S/N) where central limit 
theorem arguments would yield Gaussian statistics. For digital 
direct detection systems the comparable figure of merit would 
become K(S/N)B where (S/N) is merely P/hvB, the quantum-limited 
signal-to-noise ratio. This is true because K has been scaled 
to this value. 

Although no proof has been given, the previous arguments 
suggest that a digital direct detection system is, in fact, more 
efficient than an analog direct detection system. This would 
not be too surprising since a digital system should be more com- 
patible with a discrete photon channel. On the other hand, the 
results from the quantum detection theory indicate that there 
is something better than direct detection (although how much is 
not yet known). 

AREAS FOR FUTURE STUDY 

From the data presented here, it seems clear that a broader 
view than that allowed from experience with Gaussian channels 
must be taken, and although the PPM systems do appear quite effi- 
cient, there still are large gaps between obtainable performance 
and theoretical performance, particularly for values of (Y close 
to 1. 

In addition, efficient PPM systems require large alphabets 
with M-ary codes. If the alphabet size is reduced, the efficiency 
of the system deteriorates. The results of Helstrom (ref. 16) 
indicate that a rigorous quantum mechanical treatment can yield 
superior performance. Thus it may be possible to obtain compar- 
able performance with a smaller alphabet size and lower values of 
a. 

From a broader perspective, no one has yet been able to 
demonstrate that this performance can be maintained when traversing 
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deleterious channels. For the atmosphere it appears that "aper- 
ture averagingn (ref. 191, while not the optimum form of diversity 
combining (ref. 201, can eliminate most of the adverse effects 
when used with direct detection systems. On the other hand, very 
little is known about optical communications through rain, fog, 
clouds, haze, etc.* 

CONCLUSIONS 

In this report quantum communication systems have been 
treated in the more universally accepted context of communication 
efficiency. As a result it has been shown that some of the 
accepted criteria such as "fundamental quantum noise temperature" 
and "two photons per bit" can indeed be misleading. Some of the 
fundamental bounds have been presented in this context, and have 
shown where existing systems fit and where large gaps appear be- 
tween existing systems and the bounds. No attempt was made to 
treat anything but the free space channel (no channel disturbances), 
although additive noise was considered. Indications were made as 
to where the problem areas lie and where future work could be use- 
.fully directed. 

* 
Joint NASA/MIT Workshop on Optical Communications, Williams 

College, Williamstown, Mass., August 1968 
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